Reparameterization of Binary Interaction Parameters for The Gamma-Valerolactone Purification Process

Agung Ari Wibowo, Mufid Mufid, Asalil Mustain, Rizqy Romadhona Ginting, Dhoni Hartanto

Abstract


Selain produksi biodiesel, bioetanol, biometana dan biohidrogen dari sumber terbarukan, gamma-valerolactone (GVL) muncul sebagai bahan bakar terbarukan potensial lainnya yang dapat diproduksi dari biomassa. GVL menunjukkan karakteristik yang sesuai sebagai sumber energi cair berkelanjutan yang menjanjikan. Dlaam kegiatan produksi GVL murni jumlah besar pastinya melibatkan proses pemisahan/ pemurnian, salah satunya adalah distilasi. Dalam perancangan proses distilasi diperlukan data kesetimbangan Uap – Cair (VLE), dan untuk akurasi perancangan biasanya digunakakan software simulasi proses seperti ChemCAD. Dalam penelitian ini, data VLE yang tersedia akan direparamterisasi sehingga bisa digunakan sebagai parameter model thermodinamika di Software ChemCAD. Pada penelitian ini dilakukan reparemeterisasi parameter interaksi biner (BIP) model NRTL untuk data VLE komponen yang terlibat dalam produksi GVL dari literature yang tersedia. Kemudian BIP hasil reparemterisasi digunakan untuk analisis sensitivitas pada shortcut kolom distilasi. Hasil analisis sensitivitas menunjukan bahwa perubahan suhu umpan berpengaruh terhadap konvigurasi kolom, tetapi tidak pada kualitas GVL yang dihasilkan.

In addition to producing biodiesel, bioethanol, biomethane, and biohydrogen from renewable sources, gamma-valerolactone (GVL) is emerging as a potential renewable fuel from biomass. As a promising long-term liquid energy source, GVL possesses the necessary characteristics. The production of pure GVL in large quantities involves a separation/purification process, one of which is distillation. In designing the distillation process, Vapor-Liquid equilibrium(VLE) data is needed, and process simulation software such as ChemCAD is usually used for design accuracy. In this study, the available VLE data will be reparameterized to be used as a thermodynamic model parameter in ChemCAD Software. The binary interaction parameter (BIP) NRTL model reparameterization for the VLE data of the components involved in the creation of GVL was carried out in this work using data from the literature. The reparameterized BIP was then applied to the distillation column shortcut for sensitivity analysis. The findings of the sensitivity study reveal that changing the feed temperature changes the column arrangement but not the quality of the GVL produced.


Keywords


biofuel; distillation; gamma-valerolactone; reparameterization, vapor-liquid equilibrium

Full Text:

PDF

References


A. A. Wibowo, C. E. Lusiani, R. R. Ginting, D. Hartanto, Simulasi CHEMCAD : Studi Kasus Distilasi Ekstraktif pada Campuran Terner n-Propil Asetat / n-Propanol / Air, J. Tek. Kim. Ling., vol. 2, no. 2, pp. 75–83, 2018.

A. A. Wibowo, A. Mustain, C. E. Lusiani, D. Hartanto, R. R. Ginting, Green Diesel Production from Waste Vegetable Oil : A Simulation Study, in International Energy Conference ASTECHNOVA 2019, AIP Conf. Proc, 2020, vol. 2223, no. 020008, pp. 020008–1– 020008–6.

J. Hancsók, M. Krár, S. Magyar, L. Boda, A. Holló, D. Kalló, Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3, Microporous Mesoporous Mater., vol. 101, no. 1-2 SPEC. ISS., pp. 148–152, 2007.

S. Torres, G. Acien, F. García-Cuadra, R. Navia, Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation, Algal Res., vol. 28, pp. 30–38, 2017.

P. Ganji, S. Roy, Conversion of levulinic acid to ethyl levulinate using tin modified silicotungstic acid supported on Ta2O5, Catal. Commun., vol. 134, pp. 105864, 2020.

K. Sakakibara, K. Endo, T. Osawa, Facile synthesis of γ -valerolactone by transfer hydrogenation of methyl levulinate and levulinic acid over Ni/ZrO2, Catal. Commun., vol. 125, pp. 52–55, 2019.

J. Kim, J. Han, Simulation study of a strategy to produce gamma-valerolactone from ethyl levulinate, Energy, vol. 163, pp. 986–991, 2018.

J. Kim, J. Byun, Y. Ahn, J. Han, Catalytic Production of Gamma-Valerolactone from Two Different Feedstocks, in 13th International Symposium on Process Systems Engineering (PSE 2018), 2018, vol. 44, no. 1, pp. 295–300.

X. Cao, H. Dong, H. Chen, Q. Xu, D. Yin, Efficient synthesis of γ -valerolactone from ethyl levulinate over Ni/V2O5, in 2019 International Conference on Applied Chemistry and Industrial Catalysis, 2020, pp. 729 (2020) 012109.

J. M. Tukacs, A. Sylvester, I. Kmecz, R. V. Jones, M. Ovari, L. T. Mika, Continuous flow hydrogenation of methyl and ethyl levulinate : an alternative route to g -valerolactone production, R. Soc. open sci, vol. 6, no. 182233., 2019.

D. Havasi, P. Mizsey, L. T. Mika, Vapor-Liquid Equilibrium Study of the Gamma-Valerolactone-Water Binary System, J. Chem. Eng. Data, vol. 61, no. 4, pp. 1502–1508, 2016.

T. Raj, K. Chandrasekhar, R. Banu, J. J. Yoon, G. Kumar, S. H. Kim, Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries, Fuel, vol. 303, pp. 121333, 2021.

I. T. Horvat, H. Mehdi, V. Fabos, L. Boda, T. Mika, γ -Valerolactone — a sustainable liquid for energy and carbon-based chemicals, Green Chem., vol. 10, no. 9, pp. 238–242, 2008.

F. Albadran, M. Taher, M. Ali, I. Kamal, Process Modeling and Simulation of Levulinate Esters Production Using Commercial Software Process Modeling and Simulation of Levulinate Esters Production Using Commercial Software, in First International Scientific Conference Al-Ayen University, 2019, pp. 1279–012071.

M. K. Lam, Y. Uemura, Journal of Advanced The Potential of Gamma-Valerolactone ( GVL ) Production from Oil Palm, J Adv Chem Eng, vol. 5, no. 2, pp. 1–2, 2015.

L. Ye, Y. Han, J. Feng, X. Lu, A review about GVL production from lignocellulose : Focusing on the full components utilization, Ind. Crop. Prod., vol. 144, pp. 112031, 2020.

J. P. Pokki, H. Q. Lê, P. Uusi-Kyyny, H. Sixta, V. Alopaeus, Isobaric Vapor-Liquid Equilibrium of Furfural + γ-Valerolactone at 30 kPa and Isothermal Liquid-Liquid Equilibrium of Carbon Dioxide + γ-Valerolactone + Water at 298 K, J. Chem. Eng. Data, vol. 63, no. 12, pp. 4381–4391, 2018.

R. Ceriani, B. Elisa, R. Paz, L. Farias, F. Corre, P. Brasil, Liquid − Liquid Equilibria of Ternary Mixtures ( 1-Heptanol , Propanone , 2 ‑ Butanone or 2 ‑ Heptanone + γ ‑ Valerolactone + n ‑ Tetradecane ), J. Chem. Eng. Data, vol. 65, no. 1, pp. 19–25, 2020.

X. Shen, D. Xia, Y. Xiang, J. Gao, Gamma-valerolactone (GVL) as bio-based green solvent and ligand for iron-mediated AGET ATRP, e-Polymers, vol. 19, pp. 323–329, 2019.

A. Mustain, K. Sadiyah, A. A. Wibowo, D. Hartanto, Parameter Interaksi Biner Kesetimbangan Uap-Cair Campuran yang Melibatkan Alkohol Rantai Bercabang atau Aseton untuk Optimasi Proses Pemurnian Bioetanol, J. Tek. Kim. Ling., vol. 3, no. 2, pp. 53–61, 2019.

A. A. Kiss, S. J. F. Landaeta, E. Zondervan, Cyclic distillation - towards energy efficient binary distillation, Computer Aided Chemical Engineering, vol. 30, pp. 697-701, 2012.

D. Havasi, Separation studies on mixtures generated in biomass conversion, Ph.D. dissertation, Department of Chemical and Environmental Process Engineering. Budapest University of Technology and Economics, Budapest, Hungary, 2018.

M. A. Zubir, A. N. Rahimi, M. F. Islam Zahran, M. Z. Shahruddin, K. A. Ibrahim, M. K. Abd Hamid, Systematic design of energy efficient distillation column for alcohol mixture, Energy Procedia, vol. 142, pp. 2630–2635, 2017.

V. Tuppurainen, J. Ahola, J. Tanskanen, Effect of Organic Solvents in Separation Section of Levulinic Acid Production : Synthesis of Distillation Sequences, Chem. Eng. Trans., vol. 69, pp. 235–240, 2018.

D. M. Alonso, S. G. Wettstein, J. Q. Bond, T. W. Root, J. A. Dumesic, Production of Biofuels from Cellulose and Corn Stover Using Alkylphenol Solvents, ChemSusChem, vol. 4, pp. 1078–1081, 2011.

N. Ahmad, N. Ahmad, U. Ahmed, Process design and techno-economic evaluation for the production of platform chemical for hydrocarbon fuels from lignocellulosic biomass using biomass-derived γ-valerolactone, Renew. Energy, vol. 161, pp. 750–755, 2020.

X. Tang, L. Hu, Y. Sun, G. Zhao, W. Hao, L. Lin, Conversion of biomass-derived ethyl levulinate into γ-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst, RSC Adv., vol. 3, no. 26, pp. 10277–10284, 2013.

H. Chen, Q. Xu, H. Li, J. Liu, X. Liu, G. Huang, D. Yin, Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone Over Ni Supported on Equilibrium Fluid-Catalytic-Cracking Catalysts, Catal. Letters, vol. 151, no. 2, pp. 538–547, 2021.

J. Yang, W. Huang, Y. Liu, and T. Zhou, Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework, RSC Adv., vol. 8, no. 30, pp. 16611–16618, 2018.

D. Havasi, G. Pátzay, Z. Kolarovszki, and L. T. Mika, Isobaric Vapor-Liquid Equilibria for Binary Mixtures of γ-Valerolactone + Methanol, Ethanol, and 2-Propanol, J. Chem. Eng. Data, vol. 61, no. 9, pp. 3326–3333, 2016.




DOI: http://dx.doi.org/10.33795/jtkl.v6i1.286

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Agung Ari Wibowo, Mufid Mufid, Asalil Mustain, Rizqy Romadhona Ginting, Dhoni Hartanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.