Optimization of Sugarcane Bagasse Ash Utilization for Concrete Bricks Production Using Plackett-Burman and Central Composite Design

Maktum Muharja, Rizki Fitria Darmayanti, Arief Widjaja, Yakub Hendrikson Manurung, Ilham Alamsyah, Siska Nuri Fadilah

Abstract


PT. Industri Gula Glenmore (PT. IGG) setiap tahunnya memproduksi 14.300 ton abu ampas tebu (AAT) sebagai hasil samping pembakaran boiler yang belum dimanfaatkan secara maksimal. Menariknya, AAT memiliki kandungan silika tinggi yaitu 68,5% yang dapat ditingkatkan nilainya sebagai substitusi parsial semen dalam pembuatan bata beton. Oleh karena itu, pada penelitian ini komposisi dan ukuran partikel AAT dioptimalkan dalam pembuatan bata beton. Optimasi dilakukan dengan menggunakan Response Surface Methodology (RSM) untuk memahami perilaku faktor-faktor signifikan yang mempengaruhi kuat tekan bata beton. RSM ditentukan dengan menggunakan software Design-Expert V11. Bata beton dibuat dengan perbandingan semen dan pasir menggunakan perbandingan 1:6 dengan variasi AAT 5% sampai 25% dari berat normal semen. Hasil pengujian di Workshop menunjukkan bahwa penggunaan Fly Ash dan kapur sebagai bahan pengikat untuk menggantikan sebagian semen dengan variasi 23, 26, 28, 30, dan 33% menghasilkan kuat tekan berturut-turut sebesar 56, 52, 49, 40, dan 34 kg/cm2. Dengan demikian, bata beton pada penelitian ini termasuk dalam mutu tingkat 3 berdasarkan SNI 03-0349-1989. Inovasi ini merupakan solusi untuk meningkatkan nilai tambah AAT dan menjadi peluang bisnis baru bagi PT. IGG di masa depan.

PT. The Glenmore Sugar Industry (PT. IGG) annually produces 14,300 tons of Sugarcane Bagasse Ash (SCBA) as a by-product of boiler combustion that has not been fully utilized. Interestingly, SCBA has a high silica content of 68.5% which can be valorized as a partial substitution of cement in the manufacture of concrete bricks. Therefore, in this study, the composition and particle size of SCBA were optimized in the manufacture of concrete bricks. Optimation was carried out by using Response Surface Methodology (RSM) to understand the behavior of significant factors affecting the compressive strength of concrete bricks. RSM was determined using the Design-Expert V11 software. Concrete bricks were made with a ratio of cement and sand using a ratio of 1:6 with a variation of bagasse ash 5% to 25% of the normal weight of the cement. The test results showed that the use of fly ash and lime as a binder to replace some cement with variations of 23%, 26%, 28%, 30%, and 33% resulted in a compressive strength of 56 kg/cm2, 52 kg/cm2, 49 kg/cm2, 40 kg/cm2, and 34 kg/cm2. Thus the concrete brick in this study was included in the quality level 3 based on SNI 03-0349-1989. This innovation is a solution to increase SCBA's added value and a new business opportunity for PT. IGG in the future.


Keywords


bagasse ash; compressive strength; concrete brick; response surface methodology

Full Text:

PDF

References


M. Muharja, R. F. Darmayanti, A. Widjaja, A. A. Firmansyah, N. Karima, Simulasi Kenaikan Kapasitas Produksi Gula pada Proses Karbonatasi di PT. Industri Gula Glenmore Menggunakan Perangkat Lunak Aspen Plus, Jurnal Sains dan Teknol., vol. 11, no. 1, 2022.

A. L. Yadav, V. Sairam, L. Muruganam, K. Srinivasan, An overview of the influences of mechanical chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material, J. Clean. Prod., vol. 245, pp. 118854, 2020.

Z. Ullah, Synergistic Effect of Sugarcane Bagasse Ash Marble Sludge Powder As a Partial Replacement of Cement in Concrete, J. Mech. Contin. Math. Sci., vol. 15, no. 12, pp. 12-26, 2020.

E. P. Fauzi, N. W. Setyanto, R. Y. Efranto, Pemanfaatan Abu Ampas Tebu Sebagai Bahan Alternatif Pendukung Pembuatan Paving Block Dengan Metode Multi Respon Taguchi (Studi Kasus Di CV. Kali Ampo Malang), J. Rekayasa dan Manaj. Sist. Ind., vol. 2, no. 5, pp. 1088-1099, 2014.

M. Chabannes, E. Garcia-Diaz, L. Clerc, J.-C. Bénézet, Effect of curing conditions Ca(OH)2-treated aggregates on mechanical properties of rice husk hemp concretes using a lime-based binder, Constr. Build. Mater., vol. 102, pp. 821–833, 2016.

C. Maraveas, Production of Sustainable Construction Materials Using Agro-Wastes, Materials , vol. 13, no. 2. pp. 262, 2020.

B. Abu-Jdayil, A.-H. Mourad, W. Hittini, M. Hassan, S. Hameedi, Traditional, state-of-the-art renewable thermal building insulation materials: An overview, Constr. Build. Mater., vol. 214, pp. 709–735, 2019.

F. A. Selim, F. S. Hashem, M. S. Amin, Mechanical, microstructural acid resistance aspects of improved hardened Portl cement pastes incorporating marble dust fine kaolinite s, Constr. Build. Mater., vol. 251, pp. 118992, 2020.

S. Chra Paul, P. B. K. Mbewe, S. Y. Kong, B. Šavija, Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries, Materials , vol. 12, no. 7, pp. 1112 2019.

G. P. Rompas, J. D. Pangouw, R. Paleke, J. B. Mangare, Pengaruh Pemanfaatan Abu Ampas Tebu Sebagai Substitusi Parsial Semen Dalam Campuran Beton Ditinjau Terhadap Kuat Tarik LenturModulus Elastisitas, J. Sipil Statik, vol. 1, no. 2, pp. 82–89, 2013.

E. B. Saputra, L. I. Gunawan, H. A. Safarizki, Pengaruh Abu Ampas Tebu Terhadap Kuat Tekan Beton Sebagai Bahan Tambah dalam Pembuatan Beton Normal, Modul. Media Komun. Dunia Ilmu Sipil, vol. 1, no. 2, pp. 67–71, 2019.

Syaifuddin, Pembuatanpengujian kuat tekan batako dengan penambahan limbah tulang ikan, J. Fis.Ter., vol. 5, no. 1, pp. 1–6, 2018.

A. SutoniD. Gunawan, Analisis Daya SerapDaya Tekan Batako Pres, Terhadap Interaksi Faktor Pekerja, Faktor Komposisi Air, Faktor Komposisi Kapur-Pasir, J. Media Tek.Sist. Ind., vol. 2, no. 1, pp. 39–44, 2018.

A. Suwi, Peningkatan Kualitas untuk Meminimasi Cacat Produk Cat Polyurethane dengan Metode Taguchi, J. Inovisi, vol. 12, no. 02, pp. 55–71, 2016.

B. S. Mohammed, M. S. Liew, W. S Alaloul, A. Al-Fakih, W. Ibrahim, M. Adamu, Development of rubberized geopolymer interlocking bricks, Case Stud. Constr. Mater., vol. 8, no. January, pp. 401–408, 2018.

A. Habibi, A. M. Ramezanianpour, M. Mahdikhani, O. Bamshad, RSM-based evaluation of mechanical durability properties of recycled aggregate concrete containing GGBFS silica fume, Constr. Build. Mater., vol. 270, pp. 121431, 2021.

D. Sinkhonde, R. O. Onchiri, W. O. Oyawa, J. N. Mwero, Response surface methodology-based optimisation of cost compressive strength of rubberised concrete incorporating burnt clay brick powder, Heliyon, vol. 7, no. 12, pp. 1-10, 2021.

H. A. Yusuf, S. M. Z. Hossain, A. A. Khamis, H. T. Radhi, A. S. Jaafar, Optimization of CO2biofixation rate by microalgae in a hybrid microfluidic differential carbonator using response surface methodology desirability function, J. CO2 Util., vol. 42, no. September, pp. 101291, 2020.

K. Walbrück, L. Drewler, S. Witzleben, D. Stephan, Factors influencing thermal conductivity compressive strength of natural fiber-reinforced geopolymer foams, Open Ceram., vol. 5, no. December 2020, pp. 100065, 2021.

G. Silva, D. Castañeda, S. Kim, A. Castañeda, B. Bertolotti, L. O. S. Martin, J. Nakamatsu, R. Aguilar, Analysis of the production conditions of geopolymer matrices from natural pozzolana fired clay brick wastes, Constr. Build. Mater., vol. 215, pp. 633–643, 2019.

D. Pal, G. Patel, P. Dobariya, S. H. Nile, A. H. Pe, U. C. Banerjee, Optimization of medium composition to increase the expression of recombinant human interferon-β using the Plackett–Burman central composite design in E. coli SE1, 3 Biotech, vol. 11, no. 5, pp. 1-10, 2021.

M. Muharja, I. Albana, J. Zuhdan, A. Bachtiar, A. Widjaja, Reducing Sugar Production in Subcritical Water Enzymatic Hydrolysis using Plackett- Burman Design Response Surface Methodology, J. Tek. ITS, vol. 8, no. 2, pp. 56–61, 2019.

M. Muharja, N. Fadhilah, R. F. Darmayanti, H. F. Sangian, T. Nurtono, A. Widjaja, Effect of severity factor on the subcritical water enzymatic hydrolysis of coconut husk for reducing sugar production, Bull. Chem. React. Eng. Catal., vol. 15, no. 3, pp. 786–797, 2020.

I. D. BoatengX.-M. Yang, Process optimization of intermediate-wave infrared drying: Screening by Plackett–Burman; comparison of Box-Behnken central composite design evaluation: A case study, Ind. Crops Prod., vol. 162, pp. 113287, 2021.

E. Ding, C. Cao, H. Hu, Y. Chen, X. Lu, Application of central composite design to the optimization of fly ash-based geopolymers, Constr. Build. Mater., vol. 230, pp. 116960, 2020.

M. Li, K. Eskridge, E. Liu, M. Wilkins, Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman central composite designs, Bioresour. Technol., vol. 281, pp. 99–106, 2019.

Y. PatrisiaT. E. Putra, Influence of Peat Water on Mechanical Properties of Coconut Shell Fly Ash Based Concrete, Balanga, vol. 7, no. 2, pp. 102–108, 2019.

Q. Xu, T. Ji, S.-J. Gao, Z. Yang, N. Wu, Characteristics Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials, Materials , vol. 12, no. 1, pp. 1-19, 2019.

N. Chusilp, C. Jaturapitakkul, K. Kiattikomol, Utilization of bagasse ash as a pozzolanic material in concrete, Constr. Build. Mater., vol. 23, no. 11, pp. 3352–3358, 2009.

S. N. Minnu, A. Bahurudeen, G. Athira, Comparison of sugarcane bagasse ash with fly ash slag: An approach towards industrial acceptance of sugar industry waste in cleaner production of cement, J. Clean. Prod., vol. 285, pp. 1-42, 2021.

S. Abbas, A. Sharif, A. Ahmed, W. Abbass, S. Shaukat, Prospective of sugarcane bagasse ash for controlling the alkali-silica reaction in concrete incorporating reactive aggregates, Struct. Concr., vol. 21, no. 2, pp. 781–793, 2020.

E. Arif, M. W. Clark, N. Lake, Sugar cane bagasse ash from a high efficiency co-generation boiler: Applications in cement mortar production, Constr. Build. Mater., vol. 128, pp. 287–297, 2016.

A. Bahurudeen, D. Kanraj, V. Gokul Dev, M. Santhanam, Performance evaluation of sugarcane bagasse ash blended cement in concrete, Cem. Concr. Compos., vol. 59, pp. 77–88, 2015.

R. Kurda, J. de Brito, J. D. Silvestre, Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios, Mag. Concr. Res., vol. 70, no. 4, pp. 204–216, 2018.

J. R. González-López, C. A. Juárez-Alvarado, B. Ayub-Francis, J. M. Mendoza-Rangel, Compaction effect on the compressive strength durability of stabilized earth blocks, Constr. Build. Mater., vol. 163, pp. 179–188, 2018.

M. Hambali, I. Lesmania, A. Midkasna, Pengaruh Komposisi Kimia Bahan Penyusun Paving Block Terhadap Kuat TekanDaya Serap Airnya, J. Tek. Kim., vol. 19, no. 4, pp. 14-21, 2013.

I. Rahmawati, B. A. Fachri, Y. H. Manurung, Nurtsulutsiyah, M. Reza, Application of response surface methodology in optimization condition of anthocyanin extraction process of cocoa peel waste with Microwave Assisted Extraction Method (MAE), in IOP Conference Series: Earth Environmental Science, 2021, vol. 743, pp. 1-12, no. 1.

G. U. Alaneme, I. C. Attah, R. K. Etim, M. U. Dimonyeka, Mechanical Properties Optimization of Soil—Cement Kiln Dust Mixture Using Extreme Vertex Design, Int. J. Pavement Res. Technol., pp. 38, 2021.

S. Damiri, H. R. Pouretedal, O. Bakhshi, An extreme vertices mixture design approach to the optimization of methylal production process using p-toluenesulfonic acid as catalyst, Chem. Eng. Res. Des., vol. 112, pp. 155–162, 2016.

R. D. SneeD. W. Marquardt, Extreme vertices designs for linear mixture models, Technometrics, vol. 16, no. 3, pp. 399–408, 1974.

J. JamesP. K. Pian, Valorisation of Sugarcane Bagasse Ash in the Manufacture of Lime-Stabilized Blocks, Slovak J. Civ. Eng., vol. 24, no. 2, pp. 7–15, 2016.

B. A. Mir, K. Gupta, J. N. Jha, Some Studies on The Behavior of Sugarcane Bagasse Ash Admixed With Cement Stabilized Soil, in Int. Conf. Soil Environ. ICSE, Bangalore, 2017.




DOI: http://dx.doi.org/10.33795/jtkl.v6i1.282

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Maktum Muharja, Rizki Fitria Darmayanti, Arief Widjaja, Yakub Hendrikson Manurung, Ilham Alamsah, Siska Nuri Fadilah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.