Kemasan Antistatis Ramah Lingkungan Berbahan Dasar Poli Asam Laktat

Fagan Rezka Azzadhiya, Aroya Desma Ramadita, Gina Karnela, Mujtahid Kaavessina

Abstract


Kemasan antistatis digunakan untuk melindungi barang elektronik dari kerusakan fisik, lingkungan, dan terhadap electrostatic discharge (ESD). Conductive Polymer Composites (CPC) merupakan material yang dihasilkan dari penambahan nanopartikel konduktif dengan matriks polimer. Poly lactic acid (PLA) atau dikenal dengan poli asam laktat berpotensi sebagai matriks polimer. Carbon nanotubes (CNT) memiliki konduktivitas listrik yang tinggi dikombinasikan dengan rasio aspek yang besar sehingga kompatibel untuk dijadikan filler CPC. Metode penambahan filler dilakukan dengan melt blending dengan presentase berat filler 0; 0,5; 1; dan 1,5 wt%. Komposit nanomaterial PLA/CNT dikarakterisasi menggunakan uji SEM, FTIR, DSC, dan konduktivitas. Hasil uji SEM dan FTIR menunjukkan bahwa perubahan konsentrasi filler CNT tidak memiliki pengaruh signifikan terhadap morfologi dan struktur CPC. Uji DSC menunjukkan penambahan derajat kristalinitas seiring dengan penambahan konsentrasi CNT. Uji konduktivitas menunjukkan CNT meningkatkan nilai konduktivitas PLA. Nilai konduktivitas PLA menjadi 3,949x10-10 S/cm dan 6,019 x 10-7 S/cm setelah ditambahkan oleh CNT dengan presentase berat sebesar 0,5 wt% dan 1 wt% sehingga memenuhi syarat sebagai kemasan antistatis.

Antistatic packaging is used to protect electronic goods from physical damage, the environment, and against electrostatic discharge (ESD). Conductive Polymer Composites (CPC) are materials produced from the addition of conductive nanoparticles with a polymer matrix. Poly lactic acid (PLA) has the potential as a polymer matrix. Carbon nanotubes (CNT) that have high electrical conductivity combined with a large aspect ratio making them compatible to be used as CPC fillers. The method of adding filler was done by melt blending with filler concentrations of 0, 0.5, 1, and 1.5 wt%. PLA/CNT nanomaterial composites were characterized using SEM, FTIR, DSC, and conductivity tests. The results of the SEM and FTIR tests showed that changes in CNT filler concentration did not have a significant effect on the morphology and structure of CPC. DSC test showed an increase in degree of crystallinity along with the addition of CNT concentration. The conductivity test showed that CNT increased the conductivity value of PLA. The conductivity values of PLA become 3.949 x 10-10 S/cm and 6.019 x 10-7 S/cm after being added by CNT of 0.5 wt% and 1 wt% so that they qualify as antistatic packaging.


Keywords


CNT; CPC; antistatic packaging; PLA

Full Text:

PDF

References


A. dos S. Mesquita, L. G. de Andrade e Silva, L. F. de Miranda, Mechanical, thermal and electrical properties of polymer (Ethylene terephthalate—PET) filled with carbon black, in: Characterization of Minerals, Metals, and Materials 2018, The Minerals, Metals & Materials Series, hal. 605–614, 2018.

M.-K. Cho, I. Song, S. Pavlidis, Z. E. Fleetwood, S. P. Buchner, D. McMorrow, P. Paki, J. D. Cressler, An Electrostatic Discharge Protection Circuit Technique for the Mitigation of Single-Event Transients in SiGe BiCMOS Technology, IEEE Trans. Nucl. Sci., vol. 65, no. 1, hal. 426–431, 2018.

W. Yang, J. Wang, J. Lei, Fabrication, antistatic ability, thermal properties, and morphology of a SPE-based antistatic HIPS composite, Polym. Eng. Sci., vol. 50, no. 4, hal. 739-746, 2010.

L. S. Dilkes-Hoffman, J. L. Lane, T. Grant, S. Pratt, P. A. Lant, B. Laycock, Environmental impact of biodegradable food packaging when considering food waste, J. Clean. Prod., vol. 180, hal. 325–334, 2018.

S. M. M. Franchetti, J. C. Marconato, Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos, Quim. Nova, vol. 29, no. 4, hal. 811–816, 2006.

H. Quan, S. J. Zhang, J. L. Qiao, L. Y. Zhang, The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes, Polymer (Guildf)., vol. 53, no. 20, hal. 4547–4552, 2012.

R. Iovino, R. Zullo, M. A. Rao, L. Cassar, L. Gianfreda, Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions, Polym. Degrad. Stab., vol. 93, no. 1, hal. 147–157, 2008.

A. H. D. Abdullah, A. K. Fikriyyah, O. D. Putri, P. P. Puspa Asri, Fabrication and Characterization of Poly Lactic Acid (PLA)-Starch Based Bioplastic Composites, IOP Conf. Ser.: Mater. Sci. Eng., vol. 553, no. 1, hal. 012052, 2019.

J. Muller, C. González-Martínez, A. Chiralt, Combination Of Poly(lactic) acid and starch for biodegradable food packaging, Materials (Basel)., vol. 10, no. 8, hal. 1–22, 2017.

P. Y. Wong, S. W. Phang, A. Baharum, Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films, RSC Adv., vol. 10, no. 65, hal. 39693–39699, 2020.

S. M. Jaseem, N. A. Ali, Antistatic packaging of carbon black on plastizers biodegradable polylactic acid nanocomposites, J. Phys.: Conf. Ser., vol. 1279, no. 1, hal. 012046, 2019.

T. F. da Silva, F. Menezes, L. S. Montagna, A. P. Lemes, F. R. Passador, Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites, J. Appl. Polym. Sci., vol. 136, no. 13, hal. 1–8, 2019.

T. F. Da Silva, F. Menezes, L. S. Montagna, A. P. Lemes, F. R. Passador, Synergistic effect of adding lignin and carbon black in poly(lactic acid), Polimeros, vol. 30, no. 1, hal. e2020002, 2020.

C. M. Long, M. A. Nascarella, P. A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environ. Pollut., vol. 181, hal. 271–286, 2013.

C. Kingston, R. Zepp, A. Andrady, D. Boverhof, R. Fehir, D. Hawkins, J. Roberts, P. Sayre, B. Shelton, Y. Sultan, V. Vejins, W. Wohlleben, Release characteristics of selected carbon nanotube polymer composites, Carbon, vol. 68, hal. 33–57, 2014.

B. Kumar, M. Castro, J. F. Feller, Poly(lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors, Sens. Actuators B Chem., vol. 161, no. 1, hal. 621–628, 2012.

H. Fallahi, H. Azizi, I. Ghasemi, M. Karrabi, Preparation and properties of electrically conductive, flexible and transparent silver nanowire/poly (lactic acid) nanocomposites, Org. Electron., vol. 44, hal. 74–84, 2017.

J. F. Feller, I. Linossier, G. Levesque, Conductive Polymer Composites (CPCs): Comparison of electrical properties of poly(ethylene-co-ethyl acrylate)-carbon black with poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-carbon black, Polym. Adv. Technol., vol. 13, no. 10–12, hal. 714–724, 2002.

N. A. Mohd Radzuan, A. B. Sulong, J. Sahari, A review of electrical conductivity models for conductive polymer composite, Int. J. Hydrogen Energy, vol. 42, no. 14, hal. 9262–9273, 2017.

O. Bianchi, L. G. Barbosa, G. MacHado, L. B. Canto, R. S. Mauler, R. V. B. Oliveira, Reactive melt blending of PS-POSS hybrid nanocomposites, J. Appl. Polym. Sci., vol. 128, no. 1, hal. 811–827, 2013.

A. B. D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret ftir spectroscope of organic material, Indones. J. Sci. Technol., vol. 4, no. 1, hal. 97–118, 2019.

J. Li, Z. Song, L. Gao, H. Shan, Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method, Polym. Bull., vol. 73, no. 8, hal. 2121–2128, 2016.

H. Pang, L. Xu, D. X. Yan, Z. M. Li, Conductive polymer composites with segregated structures, Prog. Polym. Sci., vol. 39, no. 11, hal. 1908–1933, 2014.




DOI: http://dx.doi.org/10.33795/jtkl.v6i1.262

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Fagan Rezka Azzadhiya, Aroya Desma Ramadita, Gina Karnela, Mujtahid Kaavessina

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.