Uji Kinerja Sensor Molecularly Imprinted Polymer (MIP) Simazin secara Potensiometri

Yohandri Bow, Adi Syakdani, Indah Purnamasari, Rusdianasari Rusdianasari

Abstract


Molecularly Imprinted Polymer (MIP) adalah polimer sintetis dengan rongga yang spesifik untuk molekul target. Rongga (cavities)  diperoleh akibat pembuangan template, dimana rongga tersebut berfungsi mengenal molekul dengan ukuran, struktur serta sifat-sifat fisika kimia yang sama dengannya. Polimer yang dihasilkan dari teknik MIP ini diterapkan  pada permukaan material sensor sebagai instrumen  pendeteksi dan penganalisis simazin. Keunggulan dari MIP adalah sistem sensor yang telah mampu memberikan hasil analisis suatu cemaran  secara cepat, mudah dan dalam konsentrasi yang rendah (ppm). Tujuan dari penelitian ini adalah membuat MIP simazin sebagai sensor cemaran dan uji kinerja secara potensiometri. Hasil penelitian mendapatkan kondisi optimum pembuatan Molecularly Imprinted Polymer (MIP) simazin diperoleh dengan komposisi 6,02 mL kloroform; simazin 0,025 g; 0,9 mL methacrylic acid (MAA); 1,57 mL ethylene glycol methacrylic acid (EGMA); 0,07 g benzoyl peroxide (BPO) dengan waktu pemanasan selama 150 menit pada temperatur 70oC. Uji kinerja sensor dilakukan secara potensiometri dan diperoleh sensor MIP simazin yang dibuat memiliki sensitivitas dan stabilitas pada rentang konsentrasi 0,01-1,0x10-3 ppm dengan batas deteksi sebesar 0,01x10-3 ppm dan masa pakai mencapai 90 hari.

Molecularly Imprinted Polymer (MIP) is a technique of polymer preparation derived from cross-linked polymers and it has cavities that are appropriate with templates.  Those cavities also functions as media of molecular mechanical interaction that have the same size, shape, structure and physical chemistry. Polymers resulted from MIP techniques are applied on the surface of the sensor material as detecting instrument and analyzer of simazine.  The advantages of MIP are based on its sensor systems that have been able to provide quick and easy pollutant analysis results (ppm). The aim(s) of this research are to synthesize MIP simazine as sensors of pollutant and performance with potentiometric. In the result of the research, it is shown the optimum condition of Molecularly Imprinted Polymer (MIP) simazine obtained with composition of 6.02 mL chloroform; 0.025 g simazine; 0.9 mL methacrylic acid (MAA); 1.57 mL ethylene glycol methacrylic acid (EGMA); 0.07 g benzoyl peroxide (BPO) with heating time 150 minutes at 70oC. The sensor performance test was carried out in potentiometric way and it was got that the designed MIP simazine has sensitivity and stability in the concentration range of 0.01-1.0x10-3 ppm with detection limit of 0.01x10-3 ppm, and life time reached 90 days.

 


Keywords


molecularly imprinted polymer; simazine; sensor; potentiometry

Full Text:

PDF

References


V. Andreu, Y. Pico, Determination of Pesticides and their Degradation Products in Soil: Critical Review and Comparison of Methods. TrAC Trend in Analytical Chemistry. vol. 23, no. 10-11, hal. 772-789, 2004.

I. Royani, An Atrazine Molecularly Imprinted Polymer Synthesized Using a Cooling-Heating Method with Repeated Washing: Its Physico-Chemical Characteristics and Enhanced Cavities. Int. J. Electrochem. Sci., vol. 9, hal. 5651-5662, 2014.

M.G. Rubio, A.R. Medina, M. Cardova, Multiresidue Analysis of Three Groups of Pesticides in Washing Waters from Olive Processing by Solid-Phase extraction-Gas Chromatography with Electron Capture and Thermionic Specific Detection. Microchemical Journal, vol. 85, no. 2, hal. 257-264, 2007.

Y. Bow, E. Sutriyono, S. Nasir, I. Iskandar, Molecularly Imprinted Polymers (MIP) based Electrochemical Sensor for Detection of Endosulfan Pesticide, Int. Journal on Advanced. Science, Engineering and Information Technology, vol. 7 no. 2, hal. 662-668, 2017.

T. Alizadeh, M.R. Ganjali, M. Akhoundian, Fabrication of an Extra Sensitive Voltammetric Sensor Using Nanoparticles of Molecularly Imprinted Polymer for Determination of Ultra-Trace Promethazine in Plasma Sample. Int. J. Electrochem. Sci. vol. 7, hal. 10427-10441, 2012.

M. R. Ganjali, T. Alizade, B. Larijani, F. Faridbod, P. Norouzi, Nano-Composite Clozapine Potentiometric Carbon Paste Sensor Based on Biometric Molecular Imprinted Polymer. Int. J. Electrochem.Sci. vol. 7, hal. 4756-4765, 2012.

Y. Bow, Hairul, I. Hajar, Molecularly Imprinted Polymers (MIP) based PVC-Membrane-Coated Graphite Electrode for the Determination of Heavy Metals, Int. J. on Adv. Sci., Engineering and Information Technology, vol. 5, no. 6, hal. 422-425, 2015.

A. Opik, A. Menaker, V. Syritski, Molecularly Imprinted Polymers: A New Approach to the Preparation of Functional Materials in: Proceeding of the Estonian Academy of Sciences vol. 58, no. 1, hal. 3-11, 2019.

J.J. BelBruno, Molecularly Imprinted Polymers, Chem. Rev, vol.119, no. 1, hal. 94-119, 2018.

Chen, C. Yin, B. J. Jennifer, Y. Mingdi, R. B. Paulo, A.P. Scott, Fluorescence-based Optical Sensor Design for Molecularly Imprinted Polymers. Sensor and Actuators B: Chemical, vol. 102, hal. 107-116, 2004.

Y. Bow, E. Sutriyono, S. Nasir, I. Iskandar, Preparation of Molecularly Imprinted Polymer Simazine as Material Potentiometric Sensor, in: Proceeding Matec Web of Conference 101, 01002, 2017.

R. Liang, R. Zhang, W. Qin, Potentiometric Sensor Based on Molecularly Imprinted Polymer for Determination of Melamine in Milk. Sensors and Actuaters B: Chemical, vol. 141, no.2, hal. 544-550, 2009.

M. Irshad, N. Iqbal, A. Mujahid, A. Afzal, T. Hussain, A. Sharif, E. Ahmad, M.M. Athar, Molecularly Imprinted Nanomaterials for Sensor Applications. Nanomaterials vol. 3, no. 4, hal. 615-637, 2013.

Y. Bow, Hairul, I. Hajar, Potentiometric Sensor for Endosulfan Pesticide based on Molcularly Imprinted polymer in: Proceeding Forum in Research, Scinece, and Technology (FIRST), 2016.

P.S. Sharma, A. Pietrzyk-Le, F. D’Souza, W. Kutner, Electrochemically Synthesized Polymers in Molecular Imprinting for Chemical Sensing. Analytical and Bioanalytical Chemistry vol. 402, hal. 3177-3204, 2012.

Y.C. Chen, J. J. Brazier, M. Yan, P. R. Bargo, S. A. Prahl, Fluorescence-based Optical Sensor Design for Molecularly Imprinted Polymer. Material Science, Sensor and Actuators B: Chemical vol. 102, hal. 107-116, 2004.

Y. Bow, Hairul, I. Hajar, Application of Potentiometric Methods in Determination Total Organic Carbon Contents of Soil, Int. J. on Adv. Sci., Engineering and Information Technology, vol. 4, no. 4, hal. 244-252, 2004.

Y. Bow, Hairul, I. Hajar, Penentuan Logam Berat secara Anodic Stripping Voltammetry menggunakan Elektroda Grafit Pensil in: Prosiding Seminar Nasional Forum in Research, Science, and Technology (FIRST), 2016.

R. Rusdianasari, A. Taqwa, Y. Bow, Treatment of Coal Stockpile Wastewater by Electrocoagulation Using Aluminum Electrodes, Advanced Materials Research vol. 896, hal. 145-148, 2014.

R. Rusdianasari, Y. Bow, T. Dewi, Peat Water Treatment by Electrocoagulation using Aluminium Electrodes, IOP Conf. Series: Earth and Environmental Science, vol. 258 hal. 012013 ,2019.




DOI: http://dx.doi.org/10.33795/jtkl.v5i2.221

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Yohandri Bow, Rusdianasari Rusdianasari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.