Kajian Karakteristik dan Energi pada Pirolisis Limbah Plastik Low Density Polyethylene (LDPE)

Novarini Novarini, Sigit Kurniawan, Rusdianasari Rusdianasari, Yohandri Bow

Abstract


Limbah plastik Low Density Poly Ethylene (LDPE) tidak dapat terurai oleh mikroorganisme, tidak bernilai jual sehingga tertimbun di Tempat Pembuangan Sampah Akhir. Salah satu metoda pengolahan limbah plastik adalah proses pirolisis. Tujuan penelitian ini menentukan jenis bahan bakar minyak (BBM) produk pirolisis dan menentukan efisiensi tertinggi yaitu nilai tertinggi energi yang dihasilkan terhadap penggunaan bahan bakar untuk proses pirolisis. Peralatan pirolisis yang digunakan adalah 1 unit reaktor dan 1 unit kondensor. Karakteristik BBM yang dianalisa adalah cetane index, density, sulfur content, kinematic viscosity, flash point, dan caloric value dari proses pirolisis yang memvariasikan temperatur pembakaran di reaktor 200°C, 250°C, 300°C dan proses di reaktor dengan dan tanpa penggunaan 1% katalis zeolit alam terhadap 2,5 kg limbah plastik LDPE selama 6 jam. Setelah BBM yang dihasilkan terindentifikasi jenisnya, dilakukan pengkajian efisiensi energi produk BBM terhadap penggunaan bahan bakar pada proses pirolisis. Hasil analisa terhadap karakteristik produk BBM yang dihasilkan di setiap variasi temperatur pirolisis dengan dan tanpa penggunaan katalis merupakan bahan bakar jenis kerosin. Efisiensi tertinggi sebesar 72,51% adalah pada kerosin yang dihasilkan pada pirolisis menggunakan katalis pada temperatur 250°C dengan perbandingan nilai energi 20.402 kkal untuk kerosin hasil pirolisis limbah plastik LDPE dan 28.137 kkal untuk penggunaan bahan bakar Liquefied Petroleum Gas (LPG) pada proses pirolisis. Pirolisis dengan penggunaan katalis zeolit 1% pada suhu 250°C terbukti menjadi cara yang efisien dan berkelanjutan untuk pengolahan limbah LDPE menjadi BBM jenis kerosin.

Low-Density Poly Ethylene (LDPE), plastic waste cannot be broken down by microorganisms in the soil, has no sale value, so it is buried in the final waste disposal site. One of the plastic waste treatment methods is the pyrolysis process. The purpose of this study was to determine the type of fuel oil from pyrolysis products and to determine the energy efficiency produced against the highest fuel use. The pyrolysis equipment used is 1 reactor unit and 1 condenser unit. The characteristics of the fuel oil product analyzed are the cetane index, density, sulfur content, kinematic viscosity, flash point, and caloric value of the pyrolysis process which varies the combustion temperature in the reactor by 200°C, 250°C, 300°C and the process in the reactor, with and without the use of natural zeolite catalysts 1% against 2.5 kg of LDPE plastic waste for 6 hours. After the type of fuel produced is identified, an energy efficiency assessment of the fuel product is carried out on the use of fuel in the pyrolysis process. The results analysis show that the all product of fuel oil is a kerosene-type of fuel. The highest efficiency of 72.51% is the kerosene produced in pyrolysis using a catalyst at a temperature of 250°C with an energy value ratio of 20,402 kcal for kerosene from pyrolysis of LDPE plastic waste and 28,137 kcal for the use of Liquefied Petroleum Gas (LPG) fuel in the pyrolysis process. Pyrolysis using a 1% zeolite catalyst at 250°C has proven to be an efficient and sustainable way to treat LDPE waste into kerosene fuel.


Keywords


catalyst; fuel oil; LDPE; pyrolysis; temperature

Full Text:

PDF

References


A. Joshi, Rambir, R. Punia, Conversion of Plastic Waste Into Liquid Fuels-a Review, in Recent Advances in Bioenergy Research, 3rd ed., S. Kumar, A. K. Sarma, S. K. Tyagi, and Y. K. Yadav, Eds. India: Sardar Swaran Singh National Institute of Renawable Energy, 2013, hal. 444–454.

Novarini, Darmuji, H. Porawati, Analisa Temperatur and Waktu Terhadap Hasil Bahan Bakar Minyak Dengan Proses Pirolisis Sampah Kantong Plastik, Jurnal Inovator, vol.1, no. 2, hal. 18–21, 2018.

R. Miandad, M. Rehan, A. S. Nizami, M. A. El-Fetouh Barakat, I. M. Ismail, The energy and value-added products from pyrolysis of waste plastics, in Recycling of Solid Waste for Biofuels and Bio-chemicals, Environmental Footprints and Eco-Design of Products and Processes, O. P. Karthikeyan, K. Heimann, and S. S. Muthu, Eds, Singapore: Springer Science and Business Media, 2016, hal. 333–355.

C. Marculescu, Thermal-Chemical Treatment of Solid Waste Mixtures, Energy Procedia, vol. 6, hal. 558–564, 2011.

M. N. Alam, C. Charisma, Suaedi, Pyrolysis of Polypropylene (PP) Into Liquid Fuel Using Cao Catalyst, in: ICONSS (International Conference on Natural and Social Sciences), vol. 1, 2019, hal. 68–73.

R. Ploetz, Rusdianasari, E. Eviliana, Renewable Energy: Advantages and Disadvantages, Proceeding Forum in Research, Science, and Technology (FIRST), [Palembang:Indonesia], vol. 1, 2016, hal. 76.

M. Hissa, S. Niemi, K. Sirviö, A. Niemi, T. Ovaska, Combustion Studies of a Non-Road Diesel Engine With Several Alternative Liquid Fuels, Energies, vol. 12, no. 12, hal. 1–15, 2019.

B. N. Jati, R. Ermawati, Aplikasi Katalis Dalam Mengkonversi Limbah Plastik Menjadi Energi, Jurnal Kimia dan Kemasan, vol. 32, no. 2, hal. 67–72, 2010.

R. Pratiwi, W. Dahani, Pengaruh Penggunaan Katalis Zeolit Alam Dalam Pirolisis Limbah Plastik Jenis HDPE Menjadi Bahan Bakar Cair Setara Bensin, in: Seminar Nasional Sains dan Teknologi, Jakarta Indonesia, vol. 4, 2015, hal. 1–5.

S. Susumu, R. Rusdianasari, S. Yusi, Biodiesel Production from Waste Cooking Oil using Electrostatic Method, Indonesian Journal of Fundamental and Applied Chemistry, vol. 3, no. 3, hal. 443–448, 2018.

Rusdianasari, A. Syarif, M. Yerizam, M.S. Yusi, L. Kalsum, Y. Bow, Effect of Catalyst on the Quality of Biodiesel from Waste Cooking oil by Induction Heating, Journal of Physics: Conf. Series 1500 012052, hal. 1-7, 2020.

Y. Bow, Rusdianasari, L. S. Pujiastuti, Pyrolysis of Polypropylene Plastic Waste Into Liquid Fuel, IOP Conference Series: Earth And Environmental Science, 347, 012128, 2019.

E. Anzar, M. S. Yusi, Y. Bow, Purification of Crude Glycerol for Biodiesel By-product by Adsorption using Bentonite, Indonesian Journal of Fundamental and Applied Chemistry, vol. 3, no. 3, hal. 83–88, 2018.

Novarini, Rusdianasari, Y. Bow, S. Kurniawan, Study of Temperature and Use of Catalysts in the Pyrolysis of LDPE Plastic Waste on the Quantity of Oil Fuel Products Produced, In: FIRST-T1-T2-2021 (Proceeding of the 4th Forum in Research, Science, and Technology), Atlantis Highlights in Engineering, vol. 7, 2021, hal. 24–28.

S. Yunsari, Rusdianasari, A. Husaini, CPO Based Biodiesel Production using Microwaves Assisted Method, Journal of Physics: Conf. Series, vol. 1, issue. 1, 012036, 2019.

W. Trisunaryanti, Optimation of Time and Catalyst/Feed Ratio in Catalytic Cracking of Waste Plastics Fraction to Gasoline Fraction Using Cr/Natural Zeolite Catalyst, Indones. J. Chem., vol. 2, no. 1, hal. 30–40, 2002.

Rusdianasari, Y. Bow, R. A. N. Moulita, Temperature Effect on the Biodiesel Quality from Waste Cooking Oil by Induction Heating, Journal of Physics: Conf. Series, vol. 1450, 012003, hal. 1–7, 2020.

R. Thahir, A. Altway, S. R. Juliastuti, Susianto, Production of Liquid Fuel from Plastic Waste Using Integrated Pyrolysis Method With Refinery Distillation Bubble Cap Plate Column, Energy Reports, vol. 5, hal. 70–77, 2019.

R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I.. Ismail, A. S. Nizami, Plastic Waste to Liquid Oil Through Catalytic Pyrolysis Using Natural And Synthetic Zeolite Catalysts, Waste Manag, vol. 69, hal. 66–78, 2017.

Y. Bow, Pengolahan sampah Low Density Polyethylene (LDPE) dan Polypropylene (PP) Menjadi Bahan Bakar Cair Alternatif Menggunakan Prototipe Pirolisis Thermal Cracking, Jurnal Kinetika, vol. 9, no. 3, hal. 1–6, 2020.

E. S. Yusmartini, Rusdianasari, Separation Process Biodiesel from Waste Cooking Oil Using Ultrafiltration Membranes, in: FIRST (Proceeding Forum in Research, Science, and Technology), [Palembang:Indonesia], vol.1, 2016.

R. A. N. Moulita, R. Rusdianasari, L. Kalsum, Biodiesel Production from Waste Cooking Oil Using Induction Heating Technology, Indonesian Journal of Fundamental and Applied Chemistry, vol. 5, no.1, hal. 13–17, 2020.

S. Yunsari, A. Husaini, R. Rusdianasari, Effect of variation of Catalyst Concentration in the producing of biodiesel from Crude Palm Oil using Induction Heater, Asian Journal of Applied Research for Community Development and Empowerment, vol. 3, no. 1, hal. 24–27, 2019.

J. U. Putra, L. Kalsum, Y. Bow, Effect of DC Voltage on Prototype of Biodiesel Electrostatic Separator with Glyserin from Waste Cooking Oil, Indonesian Journal of Fundamental and Applied Chemistry, vol. 3, no. 3, hal. 89–93, 2018.




DOI: http://dx.doi.org/10.33795/jtkl.v5i1.190

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Novarini Novarini, Sigit Kurniawan, Rusdianasari Rusdianasari, Yohandri Bow

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.