Planning Advanced Treatment of Tap Water Consumption in Universitas Pertamina

Hafizha Hasnaningrum, Betanti Ridhosari, I Wayan Koko Suryawan

Abstract


Instalasi Pengolahan Air Limbah (IPAL) di kawasan Universitas Pertamina beroperasi sudah sangat baik. Adanya program green campus dengan indikator daur ulang air limbah menjadi salah satu tantangan dalam meningkatkan kualitas effluent WWTP tersebut dengan menambahkan unit advanced treatment. Tujuan dari studi ini adalah untuk merancang unit-unit pengolahan advanced dan perkiraan hasil effluent dan biaya yang dibutuhkan. Studi ini dilakukan dengan melakukan survey lapangan, pengambilan data kualitas air, dan studi literatur. Dengan debit (Qpeak) perencanaan 8,45 m3/jam, luas lahan yang dibutuhkan untuk penambahan advanced treatment adalah 105,85 m2. Advanced treatment terdiri dari 1 unit bak ekualisasi, 2 unit saringan pasir lambat, 1 unit bak pencuci pasir, 2 unit membran mikrofiltrasi, 1 unit proses desinfeksi, dan 2 unit reservoir. Dengan adanya unit-unit tersebut diharapkan kualitas effluent memenuhi standard kualitas air minum dengan nilai TSS 0 mg/L, Amonia (NH3-N) 0,35 mg/L, Zat Organik (KmnO4) 0,513 mg/L, Zat Terlarut (TDS) 23 mg/L, dan Total Koliform 0/100 ml sampel. Total biaya yang dibutuhkan untuk membangun advance treatment untuk konsumsi air keran adalah Rp 374.727.334.

The wastewater treatment plant (WWTP) in Universitas Pertamina’s area is operating very well. The existence of a green campus program with a wastewater recycling indicator has become one of the challenges. Improving the WWTP effluent quality by adding an advanced treatment unit. This study aims to design advanced processing units and estimate the effluent yields and required costs. This study was conducted by conducting a field survey, collecting water quality data, and literature study. With planning discharge (Qpeak) of 8.45 m3/hour, the land area required for the addition of advanced treatment is 105.85 m2. Advanced treatment consists of 1 unit of Equalization Tank, 2 units of slow sand filter, 1 unit of sand washer, 2 units of microfiltration membrane, 1 disinfection body, and 2 reservoir units. These units it is expected to make effluent quality meets the drinking water quality standards with a TSS value of 0 mg/L, Ammonia (NH3-N) 0.35 mg/L, Organic Substances (KmnO4) 0.513 mg/L, Total Dissolved Solids (TDS) 23 mg/L, and Total Coliform 0 Total/100 ml of sample. The total cost needed to build an advance treatment for tap water consumption is Rp 374,727,334.


Keywords


advanced treatment; campus; tap water; WWTP

Full Text:

PDF

References


P. Prayitno, S. Rulianah, H. Nurmahdi, Pembuatan Biogas dari Limbah Cair Tahu Menggunakan Bakteri Indigeneous, Jurnal Teknik Kimia dan Lingkungan, vol. 4, no. 2, pp. 90–95, 2020.

N. A. Zahroh, P. Prayitno, Pengaruh Konsentrasi Umpan terhadap Persentase Penurunan Konsentrasi Bahan Pencemar Air Limbah Industri Tepung Tapioka Menggunakan Proses Anaerobic Fixed Film Biofilter (AF2B), Distilat: Jurnal Teknologi Separasi, vol. 6, no. 2, pp. 431–438, 2020.

H. T. Fachrudin, Green campus concept based on architect perspective, IOP Conf. Ser.: Mater. Sci. Eng., 801 012028, pp. 1–6 2020.

C. R. Priadi, E. Suleeman, L. Darmajanti, S. Novriaty, N. Suwartha, R. Resnawati, R. Handayani, G. L. Putri, E. Felaza, T. Tjahjono, Water recycling opportunity in the business sectors of Greater Jakarta, Indonesia, International Journal of Technology, vol. 8, no. 6, pp. 1031–1039, 2017.

R. Yanidar, D. M. Hartono, S. S. Moersidik, Water quality assessment for self-sufficient water resources for DKI Jakarta, IOP Conference Series: Earth and Environmental Science, vol. 106, no. 1, 012056, 2018.

D. Ghernaout, Direct Potable Reuse: The Singapore NEWater Project as a Role Model, Open Access Library Journal, vol. 6, no. e5980, pp.1–11, 2019.

Y. Kaya, S. Dayanir, Application of nanofiltration and reverse osmosis for treatment and reuse of laundry wastewater, Journal of Environmental Health Science and Engineering, vol. 18, issue.2 pp. 699–709, 2020.

I. W. K. Suryawan, Q. Helmy, S. Notodarmojo, Laboratory scale ozone-based post-treatment from textile wastewater treatment plant effluent for water reuse, Journal of Physics: Conference Series, vol. 1456, 012002, 2020.

M. R. Apritama, I. W. K. Suryawan, A. S. Afifah, I. Y. Septiariva, Phytoremediation Of Effluent Textile Wwtp For NH3-N And Cu Reduction Using Pistia Stratiotes, Plant Archives, vol. 20, Supplement 1, pp. 2384–2388, 2020.

I. W. K. Suryawan, E. S. Sofiyah, Cultivation of Chlorella Sp. and Algae Mix for NH3-N and PO4-P Domestic Wastewater Removal, Civil and Environmental Science Journal, pp. 31–36, 2020.

F. F. de Oliveira, R. P. Schneider, Slow sand filtration for biofouling reduction in seawater desalination by reverse osmosis, Water res., vol. 155, pp. 474–486, 2019.

X. Zheng, M. Ernst, M. Jekel, Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration, Water research, vol. 44, no. 10, pp. 3203–3213, 2010.

L. Huisman, W. E. Wood, Slow Sand Filtration Handbook, Swistzerland: World Health Organiation, 1974.

Y. G. Han, O. Kwon, Y. Cho, A study of bioindicator selection for long-term ecological monitoring, Journal of Ecology and Environment, vol. 38, issue 1, pp. 119–122, 2015.

Kementrian Lingkungan Hidup dan Kehutaanan, The Minister of Environment and Forestry Decree No. 68, Domestic Waste Water Standard, Jakarta, 2016.

Kementrian Kesehatan, Ministry of Health's Regulation No.492, Drinking Water Quality Standard, Jakarta, 2010.

A. A. Ayuningtyas, N. N. Fitriani, W. W. Hadi, Pengaruh Ketebalan Media Geotextile dan Arah Aliran Slow Sand Filter Rangkaian Seri untuk Menyisihkan P Total dan N Total, Jurnal Teknik ITS, vol. 3, no. 1, pp. D26–D29, 2014.

M. Lindu, T. Puspitasari, D. A. Reinfani, Sintesis dan Uji Kemampuan Membran Mikrofiltrasi Selulosa Asetat dari Nata De Coco untuk Penyisihan Kekeruhan Pada Air Artifisial, Jurnal Sains Materi Indonesia, vol. 12, no. 3, pp. 153–158, 2018.

M. Mulder, Basic Principles Of Membrane Technology, Berlin: Springer Science & Business Media, 2012.

P. Andreo-Martínez, N. García-Martínez, J. Quesada-Medina, L. Almela, Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: A case study in the southeast of Spain, Bioresour Technol., vol.233, pp. 236–246, 2017.

F. F. Devitama, B. Paramita, N. A. Ardiani, Planning and Designing UPI Science and Techno Park as a Green Campus Center in Universitas Pendidikan Indonesia, IOP Conference Series: Earth and Environmental Science, vol. 520, 012021, 2020.

S. Sisriany, I. S. Fatimah, Green Campus Study by using 10 UNEP’s Green University Toolkit Criteria in IPB Dramaga Campus, IOP Conf. Ser. Earth Environ. Sci, vol. 91, 012037, pp. 1–7, 2017.

E. H. Muhari, F. Yulistiani, Pengolahan Air Tanah di Kawasan Politeknik Negeri Bandung menjadi Air Minum dengan Metoda Ultrafiltrasi, in: 8th Industrial Research Workshop and National Seminar, vol. 8, pp. 407–411, 26–27 July 2017.

WHO, Guidelines for Drinking Water Quality, Geneva: WHO, 2004.

L. C. Simoes, M. Simoes, M. J. Vieira, Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection, Applied and Environmental Microbiology, vol. 76, no. 19, pp. 6673–6679, 2010.

G. Prasad, R. Rajput, A. K. Chopra, Sand intermittent filtration technology for safer domestic sewage treatment, Journal of Applied Sciences and Environmental Management, vol. 10, no. 1, pp. 72–78, 2006.

M. Hidayah, Pengolahan Air Limbah Menjadi Air Minum dengan Menghilangkan Amonium dan Bakteri E-Coli Melalui Membran Nanofiltrasi, Walisongo Journal of Chemistry, vol. 1, no. 1, 2018.

K. Yettefti, F. Aboussabiq, S. Etahiri, M. Mountadar, O. Assobhei, Performance Evaluation of Sand Filter for Tertiary Treatment of Secondary Effluent of Wastewater: Effect of Hydraulic Loading, Physical and Chemical News, vol. 68, pp. 106–113 , 2013.

M. Bali, S. Farhat, Removal of Contaminants and Pathogens from Secondary Wastewater Effluents using Hollow Fiber Microfiltration Membranes, International Journal of Environmental Sciences & Natural Resources, vol. 23, no. 3, pp. 78–83, 2020.

J. T. Visscher, Slow Sand Filtration: Design, Operation, and Maintenance, Journal‐American Water Works Association, vol. 82, no. 6, pp. 67–71, 1990.

C. Chiemchaisri, S. Passananon, H. H. Ngo, S. Vigneswaran, Enhanced natural organic matter removal in floating media filter coupled with microfiltration membrane for river water treatment, Desalination, vol. 234, issue 1–3, pp. 335–343, 2008.

E. Guchi, Review on Slow Sand Filtration in Removing Microbial Contamination and Particles from Drinking Water, American Journal of Food and Nutrition, vol. 3, no. 2, pp. 47–55, 2015.

N. Fadhilah, L. A. W. Vembrio, R. H. Safira, A. Amiruddin, E. S. Sofiyah, I. W. K. Suryawan, Modifikasi Unit Proses dalam Peningkatan Efisiensi Penyisihan Amonium, Jurnal Sumberdaya Alam dan Lingkungan, vol. 7, no. 2, pp. 1–10, 2020.

KEPGUB Daerah Khusus Ibukota Jakarta No 1459, Standar Satuan Harga, Harga Satuan Pokok Kegiatan, dan Analisis Standar Belanja Penyusunan Perubahan Anggaran Pendapatan dan Belanja Daerah Tahun Anggaran 2019, Jakarta, 2019. https://jdih.jakarta.go.id/himpunan/produkhukum_detail/9794, 2019. [Online]. [Accessed 08 2020].

R. R. Yasmine, Perancangan Sistem Pengolahan Air Limbah Pada Gedung Perkantoran (Studi Kasus: Gedung Perkantoran “MIPA Tower” ITS Surabaya, Surabaya: Institut Teknologi Sepuluh Nopember, 2017.

A. Safrodin, S. Mangkoedihardjo, A. Yuniarto, Desain IPAL Subsurface Flow Constructed Wetland Di Rusunawa Grudo Surabaya, IPTEK Journal of Proceedings Series, vol. 3, no. 5, pp. 198–207, 2017.




DOI: http://dx.doi.org/10.33795/jtkl.v5i1.177

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Hafizha Hasnaningrum, Betanti Ridhosari, I Wayan Koko Suryawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.