Effect of Microwave Pretreatment on Production of Reducing Sugar from Oil Palm Empty Fruit Bunches

Budi Mandra Harahap, Robby Sudarman, Fildzah Sajidah, Diana Murti Indra Wahyuni, Dea Tesalonika Sitorus

Abstract


Perlakuan pendahulan biomassa merupakan tahapan terpenting dalam memproduksi produk-produk berbasis bio (bio-based products) secara biologis. Pada penelitian ini, energi gelombang mikro (microwave) digunakan selama perlakuan pendahuluan untuk meningkatkan kinerja proses sakarifikasi tandan kosong kelapa sawit (TKKS) menjadi gula-gula pereduksi. Faktor-faktor yang mempengaruhi perlakuan pendahuluan seperti daya (180-360 watt), waktu iradiasi (5-30 menit), dan solid loading (2,5%-7,5%) dievaluasi. Kinerja hidrolisis TKKS yang telah diberi perlakuan pendahuluan selanjutnya dianalisis dengan Cellic CTec2. Hasil penelitian menunjukkan bahwa cairan residu yang diperoleh setelah perlakuan pendahuluan menghasilkan gula pereduksi dalam jumlah yang rendah, yaitu antara 1,39 dan 3,92 mg/g-TKKS. Akan tetapi, setelah padatan residu dihidrolisis secara enzimatis, rendemen gula pereduksi meningkat secara signifikan. Menariknya, hanya pada level daya terendah (180 watt), gula pereduksi meningkat seiring dengan perpanjangan waktu iradiasi untuk semua solid loading. Sebaliknya, pada 360 watt, semakin lama waktu iradiasi diterapkan, semakin rendah gula pereduksi yang diperoleh untuk semua solid loading. Gula pereduksi tertinggi dihasilkan hingga 151 mg/g-TKKS, yaitu menggunakan 5% padatan pada 180 watt selama 25 menit. Berdasarkan hasil-hasil ini, perlakuan pendahuluan menggunakan gelombang mikro yang diikuti dengan hidrolisis enzimatis merupakan salah satu metode yang potensial untuk memproduksi gula dari TKKS.

Pretreatment of biomass is the most crucial step in the biological production of bio-based products. In this study, microwave energy was used during the pretreatment process to enhance the saccharification performance of oil palm empty fruit bunches (OPEFB) into reducing sugar. The influential factors of pretreatment such as power level (180-360 watt), irradiation time (5-30 min), and solid loading (2.5%-7.5%) were evaluated. The performance of pretreated OPEFB hydrolysis was subsequently assessed by Cellic CTec2. The result showed that spent liquor produced after pretreatment only released a low amount of reducing sugar in the range between 1.39 and 3.92 mg/g-OPEFB. After residual solid was enzymatically hydrolyzed, a significant increase in the reducing sugar yield occurred. Interestingly, only at the lowest power level (180 watts), the reducing sugar rose along with the extension of irradiation time for all solid loadings. On the contrary, the longer irradiation time was applied, the lower reducing sugar was acquired at 360 watts for all solid loadings. The highest reducing sugar was produced up to 151 mg/g-OPEFB using 5% solid at 180 watts for 25 min. This indicated that microwave pretreatment followed by enzymatic hydrolysis was one of the potential methods to recover sugars in OPEFB.


Keywords


enzymatic hydrolysis; microwave pretreatment; OPEFB; reducing sugar

Full Text:

PDF

References


B. M. Harahap, M. R. Maulid, A. I. Dewantoro, E. Mardawati, and S. Huda, Moderate pretreatment strategies for improvement of reducing sugar production from oil palm empty fruit bunches, IOP Conf. Ser.: Earth Environ. Sci., vol. 443, 012081, 2020.

E. Mardawati, D. W. Wira, M. T. A. P. Kresnowati, R. Purwadi, and T. Setiadi, Microbial Production of Xylitol from Oil Palm Empty Fruit Bunches Hydrolysate: The Effect of Glucose Concentration, J. Japan Inst. Energy, vol. 94, no. 8, pp. 769–774, 2015.

E. Triwahyuni, Muryanto, Y. Sudiyani, and H. Abimanyu, The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches, Energy Procedia, vol. 68, pp. 138–146, 2015.

B. M. Harahap and M. T. A. P. Kresnowati, Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation, Biomass Convers. Biorefinery, vol. 8, no. 2, pp. 255–263, 2018.

E. Mardawati, N. Maharani, D. W. Wira, B. M. Harahap, T. Yuliana, and E. Sukarminah, Xylitol Production from Oil Palm Empty Fruit Bunches (OPEFB) Via Simultaneous Enzymatic Hydrolysis and Fermentation Process, J. Ind. Inf. Technol. Agric., vol. 2, no. 1, pp. 29–36, 2018.

E. Mardawati, A. Werner, T. Bley, M. T. A. P. Kresnowati, and T. Setiadi, The Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunches to Xylose, J. Japan Inst. Energy, vol. 93, no. 10, pp. 973–978, 2014.

N. Rokhati, H. Susanto, K. Haryani, and B. Pramudono, Enhanced enzymatic hydrolysis of chitosan by surfactant addition, Period. Polytech. Chem. Eng., vol. 62, no. 3, pp. 286–291, 2018.

M. T. A. P. Kresnowati, E. Mardawati, and T. Setiadi, Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept, Mod. Appl. Sci., vol. 9, no. 7, pp. 206–213, 2015.

P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour. Technol., vol. 101, no. 13, pp. 4851–4861, 2010.

B. M. Harahap, E. Mardawati, and D. Nurliasari, A comprehensive review: integrated microbial xylitol, bioethanol, and cellulase production from oil palm empty fruit bunches, Jurnal Industri Pertanian, vol. 2, no. 1, pp. 142–157, 2020.

B. M. Harahap, A. I. Dewantoro, M. R. Maulid, E. Mardawati, and V. P. Yarlina, Autoclave-assisted weak acid pretreatment of oil palm empty fruits bunches for fermentable sugar production, IOP Conf. Ser.: Earth Environ. Sci., vol. 443, 012080, 2020.

J. S. Kim, Y. Y. Lee, and T. H. Kim, A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass, Bioresour. Technol., vol. 199, pp. 42–48, 2016.

E. van der Pol, R. Bakker, A. van Zeeland, D. S. Garcia, A. Punt, and G. Eggink, Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment, Bioresour. Technol., vol. 181, pp. 114–123, 2015.

M. Michelin, A. Romani, J. M. Salgado, L. Domingues, and J. A. Teixeira, Production of hemicellulases, xylitol, and furan from hemicellulosic hydrolysates using hydrothermal pretreatment, in Hydrothermal Processing in Biorefineries, H. A. Ruiz, M. H. Thomsen, and H. L. Trajano, Eds. Springer, Cham, 2017, pp. 285–315.

H. Li, Y. Qu, Y. Yang, S. Chang, and J. Xu, Microwave irradiation - A green and efficient way to pretreat biomass, Bioresour. Technol., vol. 199, pp. 34–41, 2016.

P. Puligundla, S. E. Oh, and C. Mok, Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: A review, Carbon Lett., vol. 17, no. 1, pp. 1–10, 2016.

P. Binod, K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey, Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse, Renew. Energy, vol. 37, no. 1, pp. 109–116, 2012.

X. Lu, B. Xi, Y. Zhang, and I. Angelidaki, Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency, Bioresour. Technol., vol. 102, no. 17, pp. 7937–7940, 2011.

A. Aguilar-Reynosa, A. Romaní, R. M. Rodríguez-Jasso, C. N. Aguilar, G. Garrote, and H. A. Ruiz, Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview, Energy Convers. Manag., vol. 136, pp. 50–65, 2017.

J. Lü and P. Zhou, Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars, Bioresour. Technol., vol. 102, no. 13, pp. 6966–6971, 2011.

L. W. Lai and A. Idris, Disruption of oil palm trunks and fronds by microwave-alkali pretreatment, BioResources, vol. 8, no. 2, pp. 2792–2804, 2013.

R. Singh, S. Tiwari, M. Srivastava, and A. Shukla, Microwave Assisted Alkali Pretreatment of Rice Straw for Enhancing Enzymatic Digestibility, J. Energy, vol. 2014, pp. 1–7, 2014.

G. Gong, D. Liu, and Y. Huang, Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw, Biosyst. Eng., vol. 107, no. 2, pp. 67–73, 2010.

L. W. Lai and A. Idris, Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk, Renew. Energy, vol. 99, pp. 738–746, 2016.

H. Li and J. Xu, Optimization of microwave-assisted calcium chloride pretreatment of corn stover, Bioresour. Technol., vol. 127, pp. 112–118, 2013.

K. Ninomiya, T. Yamauchi, C. Ogino, N. Shimizu, and K. Takahashi, Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification, Biochem. Eng. J., vol. 90, pp. 90–95, 2014.

L. Canilha, A. K. Chandel, T. S. d. S. Milessi, F. A. F. Antunes, W. L. d. C. Freitas, M. d. G. A. Felipe, and S. S. da Silva, Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation, Biomed Res. Int., vol. 2012, pp. 1–15, 2012.

R. Datta, Acidogenic fermentation of lignocellulose–acid yield and conversion of components, Biotechnol. Bioeng., vol. 23, no. 9, pp. 2167–2170, 1981.

G. L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem., vol. 31, no. 3, pp. 426–428, 1959.

D. R. Keshwani and J. J. Cheng, Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production, Biotechnol. Prog., vol. 26, no. 3, pp. 644–652, 2010.

S. Ethaib, R. Omar, S. M. M. Kamal, and D. R. A. Biak, Microwave-assisted pretreatment of lignocellulosic biomass: a review, Journal of Engineering Science and Technology, Special Issue on SOMCHE 2014 & RSCE 2014 Conference, pp. 97–109, 2015.

B. C. Saha, Hemicellulose bioconversion, J. Ind. Microbiol. Biotechnol, vol. 30, pp. 279–291, 2003.

S. Marx, B. Ndaba, I. Chiyanzu, and C. Schabort, Fuel ethanol production from sweet sorghum bagasse using microwave irradiation, Biomass and Bioenergy, vol. 65, pp. 145–150, 2014.

S. Jin, G. Zhang, P. Zhang, F. Li, S. Wang, S. Fan, and S. Zhou, Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust, Bioresour. Technol., vol. 221, pp. 26–30, 2016.

S. M. Nomanbhay, R. Hussain, and K. Palanisamy, Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield, J. Sustain. Bioenergy Syst., vol. 3, no. 1, pp. 7–17, 2013.

S. Vani, P. Binod, M. Kuttiraja, R. Sindhu, S. V. Sandhya, V. E. Preeti, R. K. Sukumaran, and A. Pandey, Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application, Bioresour. Technol., vol. 112, pp. 300–307, 2012.

C. Chen, D. Boldor, G. Aita, and M. Walker, Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment, Bioresour. Technol., vol. 110, pp. 190–197, 2012.

P. Tatijarern, S. Prasertwasu, T. Komalwanich, T. Chaisuwan, A. Luengnaruemitchai, and S. Wongkasemjit, Capability of Thai Mission grass (Pennisetum polystachyon) as a new weedy lignocellulosic feedstock for production of monomeric sugar, Bioresour. Technol., vol. 143, pp. 423–430, 2013.

P. Boonmanumsin, S. Treeboobpha, K. Jeamjumnunja, A. Luengnaruemitchai, T. Chaisuwan, and S. Wongkasemjit, Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments, Bioresour. Technol., vol. 103, no. 1, pp. 425–431, 2012.




DOI: http://dx.doi.org/10.33795/jtkl.v4i2.159

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.