Capturing CO2 from Biogas by MEA (Monoethanolamine) using Packed Bed Scrubber

Iqbal Nur Daiyan, Leila Kalsum, Yohandri Bow


Biogas adalah salah satu sumber energi terbarukan yang dapat dimanfaatkan sebagai pengganti energi fosil. Biogas sebagian besar mengandung metan (CH4) dan karbon dioksida (CO2). Kandungan CO2 pada biogas mengurangi efisiensi pada proses pembakaran dan dapat menyebabkan korosi pada komponen-komponen logam yang kontak langsung dengan biogas. Pemurnian biogas dengan absorpsi merupakan suatu cara untuk menurunkan kadar CO2 yang terkandung, dan meningkatkan kandungan CH4 pada biogas sehingga biogas yang dihasilkan dapat digunakan sebagai bahan bakar. Penelitian ini ditujukkan untuk mempelajari pengaruh konsentrasi monoethanolamine (MEA) dan laju alir absorben terhadap penurunan kadar CO2 yang terkandung dalam biogas. Proses absorpsi CO2 dilakukan pada scrubber tipe spray tower, scrubber yang digunakan pada penelitian ini berbahan akrilik dengan diameter 64 mm, panjang scrubber 750 mm, tinggi packing pada scrubber 500 mm dan dengan kapasitas 1.5 m3. Laju alir biogas yang digunakan 26 L/menit dengan variasi laju alir larutan MEA sebesar 0,5, 1 dan 1,5 L/menit dan variasi konsentrasi larutan MEA sebesar 1, 3, 5, dan 7M. Hasil penelitian menunjukkan pada laju alir larutan MEA 1,5 L/menit dengan konsentrasi larutan MEA 7M dapat menurunkan CO2 dari 8,53% menjadi 0,10%, dan dapat meningkatkan kandungan metana (CH4) dari 69,24% menjadi 81,20%.

Biogas is a renewable energy source that can be used as a substitute for fossil energy. Biogas mostly contains methane (CH4) and carbon dioxide (CO2). The content CO2 in biogas reduces the efficiency of the combustion process and cause corrosion in metal components when direct contact with biogas. Biogas purification using absorption method can reduce levels of CO2 contained and increase levels of CH4  then the biogas produced can be used as fuel. This research study the effect of monoethanolamine (MEA) concentration and absorbent flow rate on the reduction of CO2 contained in biogas. CO2 absorption process is carried out by a spray tower type scrubber. It consisted of an acrylic absorption column (64 mm in diameter, 750 mm in height, 500 mm in packing height and 1.5 m3 in capacity). Biogas flow rate used is 26 L/min with variation of the flow rate of MEA 0.5, 1, and 1,5 L/min and concentration of MEA solution 1, 3, 5, and 7M. The results showed that the flow rate of MEA 1.5 L/min with a concentration of 7M MEA solution can reduce CO2 from 8.53% to 0.10% and can increase the methane (CH4) load from 69.24% to 81.20%.


absorption; biogas; biogas purification; MEA; packed bed scrubber

Full Text:



D. Thrän, T. Seidenberger, J. Zeddies, and R. Offermann, Global Biomass Potentials-Resources, Drivers and Scenario Results, Energy Sustain. Dev., vol. 14, no. 3, pp. 200–205, 2010.

R. Ploetz, R. Rusdianasari and E. Eviliana, Renewable Energy: Advantages and Disadvantages, In Proceedings of the Forum in Research, Science, and Technology (FIRST); Politeknik Negeri Sriwijaya, Sumatera Selatan, Indonesia, 2016.

R. A. Nurul Moulita, Rusdianasari, and L. Kalsum, Converting Waste Cooking Oil into Biodiesel using Microwaves and High Voltage Technology, Journal of Physics: Conf. Series, (2nd Forum in Research, Science, and Technology), 1167 (012033), 2019.

S Yunsari, Rusdianasari, and A Husaini, CPO Based Biodiesel Production using Microwaves Assisted Method, Journal of Physics: Conf. Series, (2nd Forum in Research, Science, and Technology), 1167(1) (012036), 2019.

P. Dilia, K. Leila, Rusdianasari, Fatty Acids from Microalgae Botryococcus braunii for Raw Material of Biodiesel, Journal of Physics: Conf. Series, (The 6th International Conference of the Indonesian Chemical Society) 1095 (012010), 2018.

Rusdianasari, A Syarif, M Yerizam, MS Yusi, L Kalsum, Y Bow, Effect of Catalyst on the Quality of Biodiesel from Waste Cooking oil by Induction Heating, Journal of Physics: Conf. Series, (Proceedings of FIRST) 1500 (012052), 2020.

A. Wellinger and A. Lindberg, Biogas Upgrading And Utilisation Task 24: Energy From Biological Conversion of Organic Waste., pp. 1-20, 2005.

L. Appels, J. Baeyens, J. Degrève, and R. Dewil, Principles and Potential of The Anaerobic Digestion of Waste-Activated Sludge, Prog. Energy Combust. Sci., vol. 34, pp. 755–781, 2008.

P. Eriksson and M. Olsson, The Potential of Biogas as Vehicle Fuel in Europe, Master Thesis, Department of Energy and Environment, Chalmers University Of Technology, Sweden, pp. 137, 2007.

F. Bauer, C. Hulteberg, T. Persson, D. Tamm, and B. Granskning, Biogas upgrading – Review of commercial technologies, Swedish Gas Technology Centre Report, 2013.

O. W. Awe, Y. Zhao, A. Nzihou, D. P. Minh, Na. Lyczko., A Review of Biogas Utilisation , Purification and Upgrading Technologies Review. Waste and Biomass Valoriza-tion, Springer, Van Godewijckstraat 30, 3311 Gz Dordrecht, Netherlands, 8(2), pp. 267-283, 2017

M. J. Yang, W. Jing, J. F. Zhao, Z. Ling, and Y. C. Song, Promotion of Hydrate-Based CO2 Capture from Flue Gas by Additive Mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide)), Energy, vol. 106, pp. 546–553, 2016.

B. Zhao, Y. Su, and G. Cui, Post-Combustion CO2 Capture with Ammonia by Vortex Flow-Based Multistage Spraying: Process Intensification and Performance Characteristics, Energy, vol. 102, pp. 106–117, 2016.

D. Wahyudi, I. N. G. Wardana, N. Hamidi, Pengaruh Kadar Karbondioksida (CO2) dan Nitrogen (N2) Pada Karakteristik Pembakaran Gas Metana, Jurnal Rekayasa Mesin, vol. 3, no. 1, pp. 241–248, 2012.

M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, and A. G. Chmielewski, Application of Polyimide Membranes for Biogas Purification and Enrichment, J. Hazard. Mater., vol. 144, pp. 698–702, 2007.

N. N. Zulkefli, M. S. Masdar, J. Jahim, and E. H. Majlan, Overview of H2S Removal Technologies from Biogas Production, Int. J. Appl. Eng. Res., vol. 11, no. 20, pp. 10060–10066, 2016.

J. H. Gibbons, Energy from biological processes, McGraw-Hill, Inc., New York, July, pp. 1–201, 1980.

D. Deublein, and A. Steinhauser, Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & KGaA, Federal Republic of Germany, 2011.

K. Li, W. Leigh, P.H. M. Feron, H. Yu, M. Tade, Systematic Study of Aqueous Monoethanolamine (MEA)-Based CO2 Capture Process: Techno-Economic Assessment of the MEA Process and Its Improvements, Appl. Energy, vol. 165, pp. 648–659, 2016.

J. Lasocki, K. Kołodziejczyk, A. Matuszewska, Laboratory-Scale Investigation of Biogas Treatment by Removal of Hydrogen Sulfide and Carbon Dioxide, Polish J. Environ. Stud., vol. 24, no. 3, pp. 1427–1434, 2015.

T. Watabe and K. Yogo, Isotherms and Isosteric Heats of Adsorption for CO2 in Amine-Functionalized Mesoporous Silicas, Sep. Purif. Technol., vol. 120, pp. 20–23, 2013.

P. Galindo, A. Schaffer, K. Brechtel, S. Unterberger, and G. Scheffknecht, Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions, Fuel, vol. 101, pp. 2–8, 2012.

P. Kasikamphaiboon, J. Chungsiriporn, C. Bunyakan, and W. Wiyaratn, Simultaneous Removal of CO2 and H2S Using MEA Solution in a Packed Column Absorber for Biogas Upgrading, Songklanakarin J. Sci. Technol., vol. 35, no. 6, pp. 683–691, 2013.

O. I. Maile, H. Tesfagiorgis, and E. Muzenda, The Potency of Monoethanolamine in Biogas Purification and Upgrading, South African J. Chem. Eng., vol. 24, pp. 122–127, 2017.

W. Kamopas, A. Asanakham, and T. Kiatsiriroat, Absorption of CO2 in Biogas with Amine Solution for Biomethane Enrichment, J. Eng. Technol. Sci., vol. 48, no. 2, pp. 231–241, 2016.

Sajaruddin, L Kalsum, Z Muchtar, The Analysis of Biogas Fermentation Time from Cow Manure on Fixed Dome Biodigester Batch Systems, Journal of Physics: Conf. Series, (Proceedings of FIRST) 1500 (012043), 2020.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.